定量分析
1. 全定量分析以獲得最高準(zhǔn)確度
能譜中的峰高與樣品中元素的含量相關(guān)。以氟化鍶 (SrF2) 為例。根據(jù)化學(xué)計(jì)量比,預(yù)估氟峰應(yīng)該是鍶峰的兩倍,而實(shí)際上,鍶峰是氟峰的兩倍。因此,為了提供更準(zhǔn)確的定量結(jié)果,軟件必須考慮以下幾個(gè)因素進(jìn)行修正,這個(gè)過(guò)程被稱(chēng)為算法修正。
圖1 氟化鍶的點(diǎn)分析測(cè)量結(jié)果表明兩種元素的實(shí)際峰強(qiáng)與化學(xué)計(jì)量比并不相同,但依然可以獲得非常準(zhǔn)確的定量分析結(jié)果。
2. 關(guān)于原子序數(shù)、X 射線(xiàn)吸收、熒光效應(yīng)的修正 (ZAF 修正)
入射電子進(jìn)入試樣后,要受到試樣原子的散射;電子束激發(fā)樣品產(chǎn)生的原生 X 射線(xiàn)離開(kāi)試樣過(guò)程中,會(huì)受到試樣的吸收;原生 X 射線(xiàn)也會(huì)再次激發(fā)樣品,產(chǎn)生二次 X 射線(xiàn)激發(fā),這個(gè)過(guò)程稱(chēng)為二次熒光。這一系列過(guò)程都隨樣品的元素組成的變化而變化,因此需要進(jìn)行一系列修正:
1. 原子序數(shù)(Z)效應(yīng)修正,即 Z 修正。樣品的平均原子序數(shù)不同,電子穿透進(jìn)入樣品的深度就不同,激發(fā)信號(hào)強(qiáng)度自然就不同。
2. 吸收效應(yīng)(Absorb)的修正。電子束激發(fā)樣品產(chǎn)生的原生 X 射線(xiàn)離開(kāi)試樣過(guò)程中,會(huì)受到試樣的吸收,樣品元素組成和含量不同,對(duì) X 射線(xiàn)的吸收程度也不同,須進(jìn)行修正。
3. 熒光效應(yīng)(Fluorescence)的修正。特征 X 射線(xiàn)離開(kāi)樣品時(shí),高能量的 X 射線(xiàn)會(huì)引起低能量 X 射線(xiàn)元素的二次激發(fā),再次釋放 X 射線(xiàn),這一過(guò)程稱(chēng)為熒光。定量修正算法需要扣除熒光效應(yīng)產(chǎn)生的 X 射線(xiàn)強(qiáng)度。
取三種修正的首字母,總稱(chēng)為 ZAF 修正。
Φ(ρz) (Phi-Rho-Z) 函數(shù)是 ZAF 修正的進(jìn)一步延伸,它把 X 射線(xiàn)穿過(guò)相互作用區(qū)時(shí)的吸收、熒光效應(yīng)描述為原子序數(shù)和基體的函數(shù)。飛納電鏡的算法使用拓展的 Pouchou 和 Pichour 算法,通??s寫(xiě)為 XPP。
3. 元素面掃 Mapping
對(duì)于大范圍的掃描分析,每個(gè)像素的分析時(shí)間可能需要長(zhǎng)達(dá)一秒鐘,因此對(duì)大范圍內(nèi)所有像素進(jìn)行分析非常耗時(shí)。所以在面掃模式下,通常會(huì)在準(zhǔn)確性和速度之間尋求平衡。飛納電鏡的軟件可以確保重疊的信號(hào)被正確地解卷積計(jì)算。
這意味著所有重疊的信號(hào)將在元素面掃圖中顯示為不同顏色。這種方法的主要優(yōu)點(diǎn)是可以非常準(zhǔn)確地測(cè)量掃描區(qū)域的元素組成與分布,并且不會(huì)影響檢測(cè)速度。因此,可以在保證最高的能譜分辨率的同時(shí),對(duì)每一個(gè)像素進(jìn)行高效分析。以檢測(cè)硅鎢為例,法醫(yī)領(lǐng)域會(huì)研究燈泡鎢絲上的熔融玻璃,飛納電鏡的能譜面掃可以立即將鎢絲與二氧化硅區(qū)分開(kāi)來(lái)(見(jiàn)圖 2)。
圖2 法醫(yī)應(yīng)用中使用能譜面掃,可以快速清楚地區(qū)分鎢絲上的熔融玻璃(二氧化硅)。
專(zhuān)家部分
典型的硅漂移探測(cè)器具有耗盡區(qū)的高電阻硅、一個(gè)前接觸區(qū)和一個(gè)收集陽(yáng)極。入射到前接觸區(qū)域的 X 射線(xiàn)在硅基體中被吸收并產(chǎn)生電子 - 空穴對(duì)。產(chǎn)生的載流子的數(shù)量取決于入射 X 射線(xiàn)的能量。接觸區(qū)和陽(yáng)極之間預(yù)設(shè)電場(chǎng)導(dǎo)致這些電子和空穴沿電場(chǎng)線(xiàn)漂移,即向陽(yáng)極漂移。然后在陽(yáng)極積累的電荷通過(guò)前置放大器轉(zhuǎn)換為電壓。入射 X 射線(xiàn)的能量可以通過(guò)監(jiān)測(cè)每個(gè)脈沖之后,即在每次入射 X 射線(xiàn)被吸收后的電壓階躍幅度來(lái)確定。
測(cè)量這個(gè)電壓階躍的精確度是有限的。這種不精確度正是某給定能量被處理成高斯峰而不是離散峰的原因之一。然而,高斯峰形成的主要原因是入射 X 射線(xiàn)在探測(cè)器中產(chǎn)生的電子空穴對(duì)的統(tǒng)計(jì)學(xué)分布。這意味著這些高斯峰的寬度取決于探測(cè)器和 X 射線(xiàn)能量。盡管有很多參數(shù)可以定義一款檢測(cè)器的整體性能,但*認(rèn)可的參數(shù)是這些高斯峰的半高峰寬度 (FWHM),這通常被稱(chēng)為探測(cè)器的能量分辨率。實(shí)際上,能譜探測(cè)器制造商通常使用錳的 Kα 峰半高峰寬值作為標(biāo)準(zhǔn)。對(duì)于飛納能譜探測(cè)器,錳 Kα 半高峰寬值 ≤123 eV。
除能量分辨率,在評(píng)估能譜系統(tǒng)性能時(shí)還應(yīng)考慮其它幾個(gè)參數(shù)。元素范圍是指的是在整個(gè)元素周期表中可檢測(cè)到的所有元素。由于 X 射線(xiàn)接收量與傳感器面積大小成線(xiàn)性關(guān)系,因此更大面積的探測(cè)器具有更高的接收量。在描述接收量時(shí),不得不提到計(jì)數(shù)率這一概念,它用來(lái)描述離開(kāi)檢測(cè)器后進(jìn)行處理的 X 射線(xiàn)。盡管依賴(lài)于這個(gè)計(jì)數(shù)率,但實(shí)際上不到一半的輸入計(jì)數(shù)被用于識(shí)別元素和定量分析。離開(kāi)數(shù)字脈沖處理器 (DPP) 的計(jì)數(shù)率稱(chēng)為輸出計(jì)數(shù)率,是更相關(guān)的參數(shù),因?yàn)樗从沉苏嬲杏玫挠?jì)數(shù)量。飛納能譜使用 30 mm2(可選 70 mm2)的探測(cè)器,元素檢測(cè)范圍為硼 (5) 到锎 (98)。
1. 不*電荷收集
在探測(cè)器表面附近的 X 射線(xiàn)最終會(huì)進(jìn)入探測(cè)器的非活性層,它們所產(chǎn)生的電荷無(wú)法被*收集和測(cè)量。因此,它們的能量測(cè)量值比實(shí)際低一點(diǎn)。這種效應(yīng)稱(chēng)為不*電荷收集 (ICC)。低能量的 X 射線(xiàn)由于沒(méi)有足夠能量深入檢測(cè)器,尤其受到此效應(yīng)的影響。所以,能量小于 750eV 的 X 射線(xiàn)譜線(xiàn)在能譜中明顯向左偏移。
使用實(shí)驗(yàn)?zāi)P停渲型ㄟ^(guò)進(jìn)行碳校準(zhǔn)將能譜的低能量部分進(jìn)行線(xiàn)性化,以使峰可以移動(dòng)到本應(yīng)所在的位置。但是,ICC 并不是一個(gè)簡(jiǎn)單的轉(zhuǎn)變,具體如圖 3 所示。
圖3 相關(guān)低能量 Kα 峰示例,從左到右:碳 Kα (279eV)、氟 Kα (675eV))、鎂 Kα (1252eV)、硅 Kα (1739eV)、氯 Kα (2623eV) 和鈣 Kα (3693eV) 。黑色曲線(xiàn)是針對(duì)所有峰在相同計(jì)數(shù)下模擬的高斯曲線(xiàn);因?yàn)?FWHM 隨著能量的增加而增加,所以在更高的能量下峰值會(huì)更矮,以保持面積恒定。紅色曲線(xiàn)是 ICC 效應(yīng)下得到的相同的峰 。
可以注意到;在低能量下,產(chǎn)生的峰看起來(lái)或多或少呈高斯形狀,但會(huì)展寬并向左偏移;碳 Kα 的偏移多達(dá) ~25eV。從峰形可以看出將碳添加到正向模型是減少誤識(shí)別的重要環(huán)節(jié)。如果從紅色峰中減去黑色高斯峰值,會(huì)有一個(gè)明顯的差值,這很可能被誤識(shí)別為另一個(gè)元素。此外,隨著研究越來(lái)越關(guān)注輕元素的靈敏識(shí)別,ICC 修正變得更重要。
從 Phenom 1.7 系統(tǒng)開(kāi)始,內(nèi)部自帶 ICC 修正,并且默認(rèn)開(kāi)啟。這也意味著無(wú)需再進(jìn)行額外的碳校準(zhǔn),彰顯了飛納能譜工作流程的優(yōu)勢(shì)。
2. 其它與電子相關(guān)的效應(yīng)
在 X 射線(xiàn)檢測(cè)過(guò)程中可能會(huì)出現(xiàn)另外兩種相關(guān)的副作用:和峰和逃逸峰。有時(shí)候會(huì)有兩個(gè) X 射線(xiàn),同時(shí)到達(dá)脈沖處理器的信號(hào),從而出現(xiàn)一個(gè)假峰,能量是兩個(gè) X 射線(xiàn)的能量之和。無(wú)法區(qū)分此種信號(hào)的效應(yīng)一般被稱(chēng)為脈沖堆疊效應(yīng),信號(hào)被重復(fù)計(jì)數(shù)的情況則被稱(chēng)為和峰。和峰既可以來(lái)自同一元素,也可以來(lái)自不同元素的。逃逸峰則是任何類(lèi)型的硅探測(cè)器都有的。當(dāng)入射 X 射線(xiàn)從硅中激發(fā)出 X 射線(xiàn)時(shí),就會(huì)發(fā)生這種情況。通常,會(huì)使原始光子能量降低約 1.74keV,這正好對(duì)應(yīng)于硅的 Kα 峰。在進(jìn)行自動(dòng)信號(hào)分析時(shí),能譜擬合功能會(huì)將和峰和逃逸峰考慮在內(nèi)。
3. 漂移矯正
由于熱效應(yīng)或?qū)щ娦暂^差,暴露于高能電子束下的樣品會(huì)發(fā)生漂移。這種影響通常比較小,但是當(dāng)對(duì)樣品的較大區(qū)域進(jìn)行較長(zhǎng)時(shí)間的成像時(shí)(能譜面掃時(shí)也會(huì)發(fā)生這種情況),這種偏移可能會(huì)達(dá)到幾個(gè)像素,并可能導(dǎo)致電鏡圖像和能譜面掃結(jié)果出現(xiàn)明顯的不匹配。
在能譜面掃過(guò)程中,算法中的漂移矯正功能是通過(guò)測(cè)量圖像偏移以及動(dòng)態(tài)調(diào)整電子束位置對(duì)這種漂移進(jìn)行補(bǔ)償修正,以得到正確的結(jié)果。